How mantle heterogeneities drive continental subduction and magmatism in the Apennines

0
  • Schneider, FM et al. Seismic imaging of the continental lower crust in subduction under the Pamir. Earth. Science. Lett. 375, 101–112. https://doi.org/10.1016/j.epsl.2013.05.015 (2013).

    ADS CAS Article Google Scholar

  • Zheng, Y.-F. & Chen, YX Continental versus oceanic subduction zones. Natl. Science. Round. 3(4), 495–519. https://doi.org/10.1093/nsr/nww049 (2016).

    Google Scholar article

  • Kufner, Sask. et al. Hindu Kush slab failure revealed by deep structure and crustal deformation. Nat. Common. 121685. https://doi.org/10.1038/s41467-021-21760-w (2021).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Beaumont, C., Jamieson, RA, Butler, JP & Warren, CJ Crustal structure: a key constraint on the exhumation mechanism of ultra-high pressure rocks. Earth. Science. Lett. 287116-129 (2009).

    ADS CAS Article Google Scholar

  • Andersen, TB, Jamtveit, B., Dewey, JF & Swensson, E. Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the Southern Caledonides from Norway. Terra Nova 3, 303–310. https://doi.org/10.1111/j.1365-3121.1991.tb00148.x (1991).

    Article on Google Scholar Ads

  • Gerya, T. & Stöckhert, B. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. Int. J. Terre Sci. 95250–274 (2006).

    CAS Google Scholar Article

  • Rossetti, F. et al. Structural signature and PTt exhumation route of the Gorgona blueschist sequence (Tuscan Archipelago, Italy). Ofioliti 26(2), 175-186 (2001).

    Google Scholar

  • Hacker, BR & Gerya, TV Paradigms, new and old, for ultra high pressure tectonism. Tectonophysics 603, 79–88. https://doi.org/10.1016/j.tecto.2013.05.026 (2013).

    Article on Google Scholar Ads

  • Sipl, C. et al. Geometry of the Pamir-Hindu Kush intermediate depth seismic zone from local seismic data. J. Geophys. Res. solid earth 1181438-1457 (2013).

    Article on Google Scholar Ads

  • Selvaggi, G. & Amato, A. Subcrustal earthquakes in the northern Apennines (Italy): evidence for still active subduction?. Geophys. Res. Lett. 1921. https://doi.org/10.1029/92GL02503 (1992).

    Google Scholar article

  • Chiarabba, C., De Gori, P. & Mele, FP Recent Seismicity of Italy: Active Tectonics of the Central Mediterranean Region and Changes in Seismicity Rate After the Mw 6.3 L’Aquila Earthquake. Tectonophysics 638, 82–93. https://doi.org/10.1016/j.tecto.2014.10.016 (2015).

    Article on Google Scholar Ads

  • Faccenna, C., Becker, TW, Lucente, FP, Jolivet, L. & Rossetti, F. History of subduction and back-arc extension in the central Mediterranean. Geophys. J.Int. 145, 809–820. https://doi.org/10.1046/j.0956-540x.2001.01435.x (2001).

    Article on Google Scholar Ads

  • Carminati, E. & Doglioni, C. Alps versus Apennines: the paradigm of a tectonically asymmetric Earth. Earth Sci. Round. 112, 67–96. https://doi.org/10.1016/j.earscirev.2012.02.004 (2012).

    Article on Google Scholar Ads

  • Peccerillo, A. & Lustrino, M. Compositional variations of Plio-Quaternary magmatism in the circum-Tyrrhenian region: deep versus shallow mantle processes. In Plates Plumes and Paradigms Geological Society of America Special Paper Flight. 388 (eds Foulger, GR et al.) 421–434 (Geological Society of America, 2005). https://doi.org/10.1130/0-8137-2388-4.421.

    Google Scholar Chapter

  • Lustrino, M., Duggen, S. & Rosenberg, CL The central-western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth Sci. Round. 104, 1–40. https://doi.org/10.1016/j.earscirev.2010.08.002 (2011).

    ADS CAS Article Google Scholar

  • Kirby, SH, Engdahl, ER & Denlinger, R. Intermediate-depth intraslab earthquakes and arc volcanism as physical expressions of crustal and upper mantle metamorphism in subduction slabs. In Subduction: from top to bottom. Geophys. Mongr. Ser. Flight. 96 (eds Bebout, GE et al.) 195–214 (AGU, 1996).

    Google Scholar

  • Zheng, Y.-F. Geochemistry of subduction zones. Geosci. Front. ten, 1223–1254. https://doi.org/10.1016/j.gsf.2019.02.003 (2019).

    ADS CAS Article Google Scholar

  • Beccaluva, L., Di Girolamo, P. & Serri, G. Petrogenesis and tectonic setting of the Roman volcanic province, Italy. Litho 26, 191–221. https://doi.org/10.1016/0024-4937(91)90029-K (1991).

    ADS CAS Article Google Scholar

  • Chiarabba, C., Giacomuzzi, G., Bianchi, I., Piana Agostinetti, N. & Park, J. From underplating to delamination-shrinkage in the Northern Apennines. Earth. Science. Lett. 403, 108–116. https://doi.org/10.1016/j.epsl.2014.06.041 (2014).

    ADS CAS Article Google Scholar

  • Conticelli, S., Laurenzi, MA, Giordano, G., Mattei, M., Avanzinelli, R., Melluso, L., Tommasini, S., Boari, E., Cifelli, F. & Perini, G. Leucite- Carrier (kamafugitic/leucititic) and free (lamproitic) ultrapotassic rocks and associated shoshonites from Italy: Constraints on petrogenesis and geodynamics. J. Virt. Explorer. 3620. http://virtualexplorer.com.au/article/2010/251/ultrapotassic-and-related-volcanicrocks-in-italy (2010).

  • Carminati, E., Lustrino, M. & Doglioni, C. Geodynamic evolution of the central and western Mediterranean: tectonic constraints vs. igneous petrology. Tectonophysics 579, 173–192. https://doi.org/10.1016/j.tecto.2012.01.026 (2012).

    Article on Google Scholar Ads

  • Goes, S., Govers, R. & Vacher, V. Shallow upper mantle temperatures beneath Europe from P- and S-wave tomography. J. Geophys. Res. 10511153–11169 (2000).

    Article on Google Scholar Ads

  • Giacomuzzi, G., Civalleri, M., De Gori, P. & Chiarabba, C. A 3D Vs model of the upper mantle beneath Italy: insights into the geodynamics of the central Mediterranean. Earth. Science. Lett. 335–336, 105–120. https://doi.org/10.1016/j.epsl.2012.05.004 (2012).

    ADS CAS Article Google Scholar

  • Lucente, FP, Chiarabba, C. & Cimini, GB Tomographic constraints on the geodynamic evolution of the Italian region. J. Geophys. Res. 104, 20307–20327. https://doi.org/10.1029/1999JB900147 (1999).

    Article on Google Scholar Ads

  • Di Stefano, R., Kissling, E., Chiarabba, C., Amato, A. & Giardini, D. Shallow subduction beneath Italy: three-dimensional images of the Adriatic-European-Tyrrhenian lithosphere system based on a P-wave of high quality arrival times. J. Geophys. Res. 114, B05305. https://doi.org/10.1029/2008JB005641 (2009).

    Article on Google Scholar Ads

  • Piana Agostinetti, N. & Amato, A. Moho depth and Vp/Vs ratio in the Italian peninsula from teleseismic receiver functions. J. Geophys. Res. 11406303. https://doi.org/10.1029/2008JB005899 (2009).

    Article on Google Scholar Ads

  • Chiarabba, C., De Gori, P. & Speranza, F. The southern Tyrrhenian subduction zone: deep geometry, magmatism and Plio-Pleistocene evolution. Earth. Science. Lett. 268, 408–423. https://doi.org/10.1016/j.epsl.2008.01.036 (2008).

    ADS CAS Article Google Scholar

  • Wortel, MJR & Spakman, W. Slab subduction and detachment in the Mediterranean-Carpathian region. Science 290, 1910-1917. https://doi.org/10.1126/science.290.5498.1910 (2000).

    ADS CAS PubMed Article Google Scholar

  • Lustrino, M., Chiarabba, C. & Carminati, E. Igneous activity in south-central Italy: is the subduction paradigm still valid? In In the Footsteps of Warren B. Hamilton: New Ideas in Earth Science: Geological Society of America Special Paper Flight. 553 (eds Foulger, GR et al.) 1–16 (Geological Society of America, 2021).

    Google Scholar

  • Rosenbaum, G., Gasparon, M., Lucente, FP, Peccerillo, A. & Miller, MS Kinematics of slab tearing faulting during segmentation by subduction and implication for Italian magmatism. Tectonic 27, TC2008. https://doi.org/10.1029/2007TC002143 (2008).

    Article on Google Scholar Ads

  • Maury, RC et al. Post-collisional Neogene magmatism of the Maghreb Mediterranean margin: a consequence of slab failure. CR Acad. Science. Ser. IIa 331159-173 (2000).

    Google Scholar

  • Faccena, C. et al. Constraints on the mantle circulation around the Calabrian slab in deformation. Geophys. Res. Lett. 32, L06311. https://doi.org/10.1029/2004GL021874 (2005).

    ADS CAS Article Google Scholar

  • Amato, A., Alessandrini, B., Cimini, G., Frepoli, A. & Selvaggi, G. Active and residual subducted slabs beneath Italy: evidence from seismic tomography and seismicity. Anna. Geophys. XXXVI(2), 201-214 (1993).

    Google Scholar

  • Giacomuzzi, G., Chiarabba, C. & De Gori, P. Connecting the subduction systems of the Alps and the Apennines: new constraints revealed by high-resolution teleseismic tomography. Earth. Science. Lett. 301, 531–543. https://doi.org/10.1016/j.epsl.2010.11.033 (2011).

    ADS CAS Article Google Scholar

  • Piana Agostinetti, N., Bianchi, I., Amato, A. & Chiarabba, C. Fluid migration in continental subduction: a case study from the Northern Apennines. Earth. Science. Lett. 302, 267–278. https://doi.org/10.1016/j.epsl.2010.10.039 (2011).

    ADS CAS Article Google Scholar

  • Kelemen, PB, Hart, SR & Bernstein, S. Silica enrichment in the continental upper mantle by fusion/rock reaction. Earth. Science. Lett. 164(1–2), 387–406. https://doi.org/10.1016/S0012-821X(98)00233-7 (1998).

    ADS CAS Article Google Scholar

  • Gaeta, M. et al. Paleozoic metasomatism at the origin of Mediterranean ultrapotassic magmas: Constraints of the time-dependent geochemistry of volcanic products from Colli Albani (Central Italy). Litho 244, 151–164. https://doi.org/10.1016/j.lithos.2015.11.034 (2016).

    ADS CAS Article Google Scholar

  • Van Decar, J. & Crosson, R. Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares. Bull. Seismol. Soc. A m. 80(1), 150-169 (1991).

    Google Scholar

  • Steck, L. & Prothero, W. A 3D ray tracer for teleseismic body wave arrival times. Bull. Seismol. Soc. A m. 81(4), 1332–1339 (1991).

    Google Scholar

  • Share.

    Comments are closed.